CPT 結果から推定する細粒分含有率の評価精度について

正	\bigcirc	加藤	清次	1*
Ē		高田	徹	2*
ТĒ		須々田	幸治	3*

(2)

細粒分含有率	三成分コーン貫入試験	液状化判定
小規模建築物	地盤調査	土質判別

1. はじめに

三成分コーン貫入試験(以下,CPT)結果を用いた液状 化判定手法は、日本建築学会編「建築基礎構造設計指 針」¹⁾に示されており、東日本大震災後、宅盤調査におい ても利用頻度が増えつつある。しかしながら判定精度や 対費用効果の問題で、CPT が敬遠されることも少なくな い。これは、実測データ等との精度把握が十分に行われ ていないからと考えられる。

そこで本稿では,液状化を評価する上で重要な地盤定数の一つである細粒分含有率 *F*。に着目し,過去に実施した CPT と粒度試験結果を比較した。

2. CPT 結果による細粒分含有率の評価

CPT 結果(先端抵抗 q_t ,周面摩擦抵抗 f_s ,間隙水圧 u) から土質を判別する手法には,Robertson が提案する土質 分類判別図(図 1)²⁾や土質分類指数(土の挙動特性指

Estimation accuracy of fine fraction content estimated from the CPT results

標)	I _c (式1)	を用いた判別法	(図1中の表)	³⁾ があり,	最
近て	っはこれら	の手法が一般的で	である。		

 $I_{\rm c} = \{ (3.47 - \log Q_{\rm t})^2 + (\log F_{\rm r} + 1.22)^2 \}^{0.5}$ (1) $\subset \subset \{\mathcal{C}, \mathcal{C}\}$

 $Q_{t}: 基準化先端抵抗{=(q_{t} - \sigma_{vo}) / \sigma_{vo}'}$

 $F_{\rm r}$: 基準化フリクション比{ = $f_{\rm s} / (q_{\rm t} - \sigma_{\rm vo}) \times 100$ (%) }

σ_{vo}:当該深さの鉛直全応力

*σ*_{vo}': 当該深さの鉛直有効応力

實松・鈴木⁴⁾は、この I_c が大きくなると F_c が増加する 傾向を実験的に求め、式2を提案している。

F_c = I_c^{4.2} 3. 比較データ

表1に CPT の調査地と概要を示す。これら調査の大半 は、住宅地で行われており、新規住宅建設の基礎設計資 料とすることを目的として実施されたものである。粒度 試験は、CPT を行ったポイントから1~3 m 程度離れた箇 所でボーリングを行い、各深度で土質試料を採取して実 施した。

CPT 結果は、土質試料を採取した深度区間で、平均値 にて整理した。

調査地 No.	調查地	粒度試 験数	採取深度 (m)			
1	東京都足立区	10	1.3~12.4			
2	千葉県浦安市	9	2.0~10.0			
3	千葉県八潮市	3	4.1~11.2			
4	埼玉県草加市	4	2.0~6.8			
5	佐賀県佐賀郡	2	3.5, 8.5			
6	佐賀県杵島郡	2	2.8, 8.5			
7	石川県小松市	4	1.6~7.5			
8	千葉県我孫子市	2	3.3, 4.3			
9	茨城県神栖市	3	1.3~3.3			
10	茨城県神栖市	3	1.3~4.3			
11	茨城県神栖市	2	1.25, 3.3			
12	茨城県神栖市	3	1.3~4.3			
13	茨城県神栖市	3	1.3~4.3			
14	山形県酒田市	2	2.4, 6.4			
15	静岡県駿東郡	1	6.4			
16	茨城県神栖市	4	1.3~4.3			
17	新潟県柏崎市	8	3.3~13.3			
18	新潟県柏崎市	8	3.3~10.3			
	合計	83				

表1調査地点と調査概要

4.結果と考察

図 2 に CPT 結果および CPT で求めた F_c の推定値(式 2 を利用)と実測値の深度分布の代表例(調査地 No.1)を示す。図 2 中の⑤を見て分かるように、CPT で推定した F_c と実測値は概ね類似した深度分布傾向を示している。ただし、大きくばらついている測点も見られた。

図 3 に全調査地点の $I_c \geq F_c$ (実測値)の比較を示す。 図中には、式 2 の直線および当調査結果で得られた近似 線 ($F_c = 4.136 I_c^{2.555}$ …(3))を記した。図より、 $I_c \geq F_c \geq$ 間には相関係数 r = 0.812 と高い正の相関が見られており、 I_c から F_c を推定できる可能性は高いことが分かった。

図4に F_c の実測値と推定値を1:1 スケールで示した。 図より実測値と推定値が大きくばらついている測点が見られる。この要因には,推定式の精度や鉛直有効応力に起因した I_c の算出精度によると思われるが,調査測点によっては互層地盤で層の境界付近で試料採取したものも含めていることが上げられる。これらを踏まえた結果ではあるが,CPTで求めた F_c の推定値には, $F_c = 19.8$ %(式2), $F_c = 12.6$ %(式3)の標準誤差が認められた。

5.まとめ

本稿では、合計 18 調査地、83 測点の CPT 結果から推定した F_c と実測値を比較しその評価精度を考察した。 I_c と F_c と間には高い正の相関が見られるが、 F_c 値として 12.6~19.8 %の標準誤差が認められた。

今後,調査を蓄積しながら精度を再評価していくと共 に,そのばらつきが液状化判定にどの程度影響を及ぼす かを見極めたいと考えている。

謝辞

本稿をまとめるにあたって, Soil-i 技術研究会の会員の 皆様, ならびに当該データに携わった多くの関係各位に 感謝の意を表します。

参考文献

- 1) 日本建築学会偏:建築基礎構造設計指針,日本建築学会, pp. 61-72, 1988.
- 2) Robertson, P. K. et al. : Soil classification using the cone penetration test Canadian Geotechnical Journal, Vol. 27, No. 1, pp. 151-158, 1990.
- Robertson, P. K. et al. : Liquefaction of sands and its evaluation, Proceedings of the First International Conference on Earthquake Geotechnical Engineering, IS TOKYO'95, Vol.3, pp. 1253-1289, 1995.
- 4) 實松俊明,鈴木康嗣:コーン貫入試験結果と地盤物性との関係 (その1 土質判別と標準貫入試験のN値の評価),第40回地盤工 学研究発表講演集,pp.59-60,2005.

*1 アキュテック

- *2 設計室ソイル
- *3 アースリレーションズ

- *1 Accutech
- *2 Soil Design
- *3 Earth Relations