RES－P 工法 設計計画書

山田 太郎•花子 様邸 新築工事

指定施工会社
株式会社 設計室ソイル
〒103－0027
中央区日本橋 3－3－12 E－1ビル4階
Tel．03－3273－9876 Fax．03－3273－9927

承認印
設計•施工管理指導
株式会社 設計室ソイル
〒103－0027
東京都 中央区日本橋 3－3－12 E－1 ビル 4 階

Tel．03－3273－9876 Fax．03－3273－9927

RES－P 工法 設計計画書

目 次
I ．建築技術性能証明書 • • • • ．．．．．．．．．．． 1
II ．物件概要 ．．．．．．．．．．．．．．． 2

III．設計計画 • • • • • • • • • • • • • • • 2
1．設計手順

2．適用条件判定
3．設計条件
4．設計仕様の設定
5．補強地盤の長期許容支持力の確認
6．パイプ長さ
7．パイプ配置計画
8．特記事項

IV．施工計画
1．施工機械

2．使用材料
3．施工手順
4．パイプ上端部の仕様
5．施工管理

V．添付資料 ．．．．．．．．．．．．．．． 8
－スウェーデン式サウンディング試験結果

GBRC 性能証明 第04－02号 改 8

建築技術性能証明書

技術名称：RES－P 工法
一小規模建築物の基礎に用いる細径銅管による地盤補強工法—（改定 8）
申 込 者：大成建設株式会社 代表取締役社長 村田 誉之
東京都新宿区西新宿一丁目 25 番 1 号株式会社設計室ソイル 代表取締役 真島 正人東京都中央区日本橋 3－3－12 E－1 ビル 4 F

技術概要：本技術は，小規模建築物を対像として，地盤の支持力增加と基硔の沈下低減を図るため に，地盤中に細径の銅管を所定の問隔で鉛直に回転圧入し，その上部に直接基擞（布基䃈 またはべた基磷）を構築する地盤補強工法である。

開発趣旨：本技術は，施工性やコストの問題で採用できる基磷工法の制約が大きい小規模建築物を対像として，杭状に打設した細径銅管と直接基磉の鉛直支持能力を㽧加することで所要の鉛直支持力を確保する地盤補強工法である。開発にあたっては，いわゆる＂足場パイプ＂ として広く流通している細径の一般構造用炭素鋼鋼管を採用することでコスト低減を図る とともに小型機械での回転圧入を可能とし，施工性の向上を図ろうとしている。

当法人の建篡技術認証•証明事業 業務規程に基づき，上記の性能証明対象技術 の性能について，下記の通り証明する。なお，本証明の有効期間は，平成 31 年 9月末日までとする。

平成 28 年 9 月 7 日

証明方法：申込者より提出された下記の資料により性能証明を行った。
資料1：RES－P 工法 性能証明のための説明資料
資料2：RES－P工法 設計•施工基準
資料 3 ：参考资料
資料 4 ：追加資料
資料5：載荷試験データ集
資料 6 ：更新資料
資料 1 には，本技術の目標性能達成の妥当性を確認した説明資料がまとめられている。資料 2 は，本工法の設計•施工基準であり，設計基準，施工基準の他，管理体制などが示 されている。
資料3には，沈下量評価のための解析結果，鋼管の耐久性調査結果などが示されている。
資料 4 には，鋼管の座屈検討結果などが示されており，資料 5 では，各種の鉛直載荷試験結果などが示されている。
資料 6 には，施工実績や運用体制の維持状況などが示されている。
証明内容：本技術についての性能証明の内容は，補強地盤の鉛直支持力についてのみを対象としてお り，以下の通りである。
申込者が提案する「RES－P 工法 設計•施工基準」に従って施工された補強地幋の長期荷重時の鉛直荷重に対する支持能力は，同基準に定めるスウェーデン式サウンディング試験結果に基つく支持力度算定式で評価できる。
また，本技術については，規定された施工管理体制が適切に運用され，工法が適正に使用 されている。

II．物件概要

工事名称	山田 太郎•花子 様邸 新築工事
建設地	東京都中央区日本橋
建設会社	ソイル建設 株式会社
指定施工会社	株式会社 設計室ソイル

III．設計計画
1．設計手順

図－1 設計手順
2．適用条件判定
2．1．適用建物
－建物の規模（下記の条件すべてを満たすこと）
○階数：地上 3 階建以下
（ 高さ：13．0m以下
\bigcirc 延べ面積： $1500 \mathrm{~m}^{2}$ 以下（平屋に限り3，000 m^{2} 以下）
－基礎の設計荷重と基礎形状（以下のどちらかの条件を満たすこと）
\bigcirc 長期設計荷重度 $80 \mathrm{kN} / \mathrm{m}^{2}$ 以下のべた基礎

2．2．地盤調査と適用地盤

本工法は粘性土地盤及び砂質土地盤に適用する。本工法の検討にあたってはスウェーデン式 サウンディング試験（以下，SWS試験という）を実施する。必要に応じて，平板載荷試験や ボーリング調査（土質試験を含む），コーン貫入試験も実施する場合がある。
－地盤調査

$$
\text { SWS試験の測点数 : } 3 \text { ポイント その他の試験の測点数 : } 0 \text { ポイント }
$$

－適用地盤の判定
全測点の基礎下 2 m の W_{SW} の平均値若しくは全測点の原地盤の極限支持力度 q_{d} の平均値の少なくともどちらか一方が適用条件を満たす場合に適用できる。

なお，原地盤の極限支持力度 q_{d} は，基礎下から 2.0 m の範囲について，粘性土は（1）式，砂質土は（2）式により算定した値の平均値を，計画地の原地盤の極限支持力とする。

$$
\begin{array}{llll}
\text { 粘性土: } & q_{d}=5.1 \times \alpha \times \frac{45 W_{S W}+0.75 N_{S W}}{2} & {\left[\mathrm{kN} / \mathrm{m}^{2}\right]} & \cdots(1) \\
\text { 砂質土: } & q_{d}=\left(30 W_{S W}+0.64 N_{S W}\right) \times 3 & {\left[\mathrm{kN} / \mathrm{m}^{2}\right]} & \cdots(2)
\end{array}
$$

ここで，α は基礎の形状係数で，布基礎の場合は $\alpha=1.0$ である。べた基礎の場合は，基礎の短辺長さを B ，基礎の長辺長さを L として，$\alpha=1.0+0.2 B / L$ で求める。

表－1 各測点の $W_{S W}$ と q_{d}（詳細は添付資料：SWS試験結果による計算書を参照）

測点	A	B	C							
$W_{\text {SW }}$	0.91	0.86	0.94							
q_{d}	126.7	115.4	133.0							

$$
\left.\begin{array}{rl}
\bigcirc W_{\mathrm{SW}} & =0.90 \\
q_{\mathrm{d}} & =125.03 \\
\geqq & 0.50 \\
60.0 & \mathrm{kN} \\
\mathrm{kN} / \mathrm{m}^{2}
\end{array}\right\} \cdot \cdot \cdot \cdot \cdot \cdot \mathrm{OK}
$$

3．設計条件
－基礎仕様

$$
\begin{aligned}
\text { 基礎の種類 } & \text { べた基礎 } \\
\text { 基礎形状 } & 7,735 \mathrm{~mm} \times 10,010 \mathrm{~mm} \\
\text { 長期設計荷重 } & 30 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

－目標性能
補強地盤の長期許容支持力 q_{ra} を，基礎の長期設計荷重以上とする。
補強地盤の長期許容支持力 q_{ra} は，（3）式により評価する。

$$
q_{r a}=\frac{1}{5} q_{d}+\frac{1}{2} \cdot \frac{P_{d}}{A} \quad\left[\mathrm{kN} / \mathrm{m}^{2}\right] \cdot \cdot(3)
$$

$$
\begin{array}{lll}
\text { ここで, } & q_{\mathrm{d}}: \text { 地盤の極限支持力度 } & {[\mathrm{kN} / \mathrm{n}} \\
& P_{\mathrm{d}}: \text { 設計パイプ耐力 } & {[\mathrm{kN}]} \\
A: \text { パイプ1本あたりの負担面積 } & {\left[\mathrm{m}^{2}\right]}
\end{array}
$$

極限支持力度 q_{d} の敷地地盤に対して，目標とする支持能力を満足するように，設計パイプ耐力 P_{d} ，パイプ 1 本あたりの負担面積 A を決定する。

4．設計仕様の設定

4.1 原地盤の極限支持力度 q_{d}

2．2節より，本計画の原地盤の極限支持力度 q_{d} は次の通りである。

$$
q_{\mathrm{d}}=125.03 \mathrm{kN} / \mathrm{m}^{2}
$$

4.2 設計パイプ耐力 P_{d}

設計パイプ耐力 P_{d} は，布基礎の場合は $P_{\mathrm{d}}=15[\mathrm{kN}]$ ，べた基礎の場合は $P_{\mathrm{d}} \leqq 20$ で（3）式 より算定される必要値以上の値とする。

これより，本計画の設計パイプ耐力を次の通りとする。

$$
P_{\mathrm{d}}=20.0 \quad \mathrm{kN}
$$

4.3 パイプ負担面積 A

パイプ配置間隔は，（3）式を満足するパイプ1本あたりの負担面積 A に応じて定める。
長期設計荷重 $30 \mathrm{kN} / \mathrm{m}^{2}$ のべた基礎より，パイプ1本あたりの負担面積 A の上限は $0.73 \mathrm{~m}^{2}$ 以下である。上限値および（3）式より，本計画のパイプ1本あたりの負担面積 A を次の通りとする。

$A \leqq$	0.73

5．補強地盤の長期許容支持力の確認
設定した設計仕様により補強した地盤の長期許容支持力 q_{ra} が，基礎の長期設計荷重以上となる ことを（3）式により確認する。

$$
\begin{aligned}
q_{\mathrm{ra}} & =\frac{1}{5} q_{d}+\frac{1}{2} \cdot \frac{P_{d}}{A} \\
& =0.2 \times 125.0+0.5 \times 20 \div 0.73 \\
& =38.7 \geqq 30 \mathrm{kN} / \mathrm{m}^{2} \quad . \quad . \quad \cdot \mathrm{OK}
\end{aligned}
$$

6．パイプ長さ
SWS試験結果から，（4）式より，パイプ深度 z＇ま でのパイプ1本あたりの周面摩擦力 P_{d} を算定する。 この摩擦力が設計パイプ耐力 P_{d} 以上となるように， パイプ長さ L を決定する。

$$
\begin{aligned}
P_{d} & =\sum\left(\Delta L_{p} \cdot \tau \cdot \phi\right) \\
\tau & =\frac{1}{2}\left(45 W_{S W}+0.75 N_{S W}\right) \\
\tau & =\frac{10}{3}\left(2.0 W_{S W}+0.067 N_{S W}\right)
\end{aligned}
$$

［ kN ］• •（4）
（粘性土）
（砂質土）

ここで，

$$
\begin{array}{cll}
\Delta L_{p} & : \text { 区間パイプ長 } & \\
\tau & : \text { 地盤の摩擦力 } & \\
\phi & : \text { パイプ周長 } 48.6 \times \pi \times 10^{-3} & {\left[\mathrm{kN} / \mathrm{m}^{2}\right]} \\
& {[\mathrm{m}]}
\end{array}
$$

なお，パイプ長さ L は，

- 14.0 m 以下とする，
- 摩擦タイプ地盤（支持地盤がない場合）では 5.5 m 以上とする。

以上の算定結果及びその他の地盤特性を考慮し，本計画のパイプ長さ L を次の通りとする。

$$
L=6.5 \mathrm{~m}
$$

7．パイプ配置計画

建物基礎に対し，4．3節で定めたパイプ1本あたり の負担面積 A を基にパイプを配置する。
RES－P工法配置図（次ページ参照）より，本計画 のパイプ打設本数は次の通りである。

8．特記事項
（1）新規盛土なし

測定点：A					
深度 Z m	パイプ 深度 z＇ m		荷重 $W_{\text {SW }}$ kN	回転数 $N_{\text {SW }}$	摩擦力 P_{d} kN
0.25	0.15	Clay	1.00	0	0.5
0.50	0.40	Clay	0.75	0	1.2
0.75	0.65	Clay	0.75	0	1.8
1.00	0.90	Clay	0.75	0	2.4
1.25	1.15	Clay	1.00	4	3.4
1.50	1.40	Clay	1.00	8	4.3
1.75	1.65	Clay	1.00	8	5.3
2.00	1.90	Clay	1.00	4	6.2
2.25	2.15	Clay	1.00	0	7.1
2.50	2.40	Clay	1.00	0	7.9
2.75	2.65	Clay	1.00	0	8.8
3.00	2.90	Clay	1.00	0	9.7
3.25	3.15	Clay	1.00	0	10.5
3.50	3.40	Clay	1.00	4	11.4
3.75	3.65	Clay	1.00	12	12.5
4.00	3.90	Clay	1.00	16	13.6
4.25	4.15	Clay	1.00	8	14.5
4.50	4.40	Clay	1.00	20	15.7
4.75	4.65	Clay	0.75	0	16.3
5.00	4.90	Clay	0.75	0	17.0
5.25	5.15	Clay	1.00	0	17.8
5.50	5.40	Clay	1.00	0	18.7
5.75	5.65	Clay	1.00	0	19.5
6.00	5.90	Clay	1.00	0	20.4
6.25	6.15	Clay	1.00	0	21.3
6.50	6.40	Clay	1.00	0	22.1
6.75	6.65	Clay	1.00	0	23.0
7.00	6.90	Clay	1.00	0	23.8
7.25	7.15	Clay	1.00	0	24.7
7.50	7.40	Clay	1.00	0	25.6
7.75	7.65	Clay	1.00	0	26.4
8.00	7.90	Clay	1.00	0	27.3
8.25	8.15	Clay	1.00	8	28.2
8.50	8.40	Clay	1.00	12	29.3
8.75	8.65	Clay	1.00	12	30.3
9.00	8.90	Clay	1.00	8	31.3
9.25	9.15	Clay	1.00	16	32.4
9.50	9.40	Clay	1.00	20	33.5
9.75	9.65	Clay	1.00	12	34.5
10.00	9.90	Clay	1.00	24	35.7

IV．施工計画

1．施工機械
本工法の施工機械は，RES－P工法技術委員会の承認を受けたものの中から，施工地の敷地条件等を勘案して選定する。施工機械には，トラック式（自走式）とクローラー式（回送車にて搬入） がある。

2．使用材料
パイプおよび継手は次に示す仕様とする。本工法に使用するパイプおよび継手は，RES－P工法技術委員会が指定する供給会社へ発注する。

表－3パイプの仕様

径	$[\mathrm{mm}]$	48.6
肉厚	$[\mathrm{mm}]$	2.4
長さ	$[\mathrm{m}]$	7.0 以下（継手2箇所以内で，最大施工深さ 14．0）
材質および 防錆処理	GBRC 性能証明 第04－02号 改8 に依る	

（a）頭部ピンあり
（b）ピンなし

（c）両端ピンあり
図－2 パイプ形状

表－4 継手仕様			
	ほぞ	カラー	
径 $[\mathrm{mm}]$	46.3 以下	48.6 以下	
肉厚 $[\mathrm{mm}]$	2.2 以上	2.2 以上	
材質および 防錆処理	GBRC 性能証明 第04－02号 改8 に依る		

3．施工手順

RES－P工法の施工手順を，下図に示す。

パ
イ
プ
の
芯
出
し

\rightarrow| |
| :---: |
| 施 |
| 工 |
| 機 |
| 械 |
| の |
| 設 |
| 置 |
| |

図－3 施工手順

4．パイプ上端部の仕様

地震時の水平力等をパイプに与えないためにパイプと基礎本体とは一体化せず，パイプ上端 レベルを基礎下端または捨てコンクリート下端とする。ただし，砕石を十分に転圧することに より，鉛直力が地盤およびパイプに十分伝達される仕様であれば，パイプ上端レベルを基礎下端または捨てコンクリート下端から 120 mm 以内とする。砕石厚さおよび施工手順に応じて， パイプキャップの種類を選定する。

5．施工管理

施工管理は，下表の項目について行い，RES－P工法技術委員会に報告する。
表－5 施工管理項目

工程	管理項目			管理方法
材料受け入れ	$\begin{aligned} & \text { パ } \\ & \text { ィ } \\ & \text { プ } \end{aligned}$	$\begin{aligned} & \text { 継 } \\ & \text { 手 } \end{aligned}$	径•肉厚	スケールによる測定。納品書で出荷時の検査結果が確認できれば，目視確認で可
			長さ	スケールによる測定
			亜鉛めっき	目視検査
			変形	目視検査
			頭部ピン	目視検査
パイプ貫入	作業地盤			整地状況•敷鉄板厚・ベニヤ等の敷込みを目視確認
	パイプ芯			チェックポイントから定尺棒により測定，目串にて明示
	リーダーの鉛直性			トランシットまたは水準器等にて直角二方向から確認又は リーダーの傾斜計による確認
	パイプの建て込み精度			トランシットまたは水準器等にて直角二方向から確認
	貫入深度			レベルによる確認
貫入力の確認	貫入力			貫入本数の 10% について貫入力測定器により測定
パイプの芯ずれ	偏芯量			チェックポイントから定尺棒により測定

